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In natural scenes, objects generally appear together with other objects. Yet, theoretical studies of neural population coding typically focus
on the encoding of single objects in isolation. Experimental studies suggest that neural responses to multiple objects are well described by
linear or nonlinear combinations of the responses to constituent objects, a phenomenon we call stimulus mixing. Here, we present a
theoretical analysis of the consequences of common forms of stimulus mixing observed in cortical responses. We show that some of these
mixing rules can severely compromise the brain’s ability to decode the individual objects. This cost is usually greater than the cost
incurred by even large reductions in the gain or large increases in neural variability, explaining why the benefits of attention can be
understood primarily in terms of a stimulus selection, or demixing, mechanism rather than purely as a gain increase or noise reduction
mechanism. The cost of stimulus mixing becomes even higher when the number of encoded objects increases, suggesting a novel
mechanism that might contribute to set size effects observed in myriad psychophysical tasks. We further show that a specific form of
neural correlation and heterogeneity in stimulus mixing among the neurons can partially alleviate the harmful effects of stimulus mixing.
Finally, we derive simple conditions that must be satisfied for unharmful mixing of stimuli.
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Introduction
In natural vision, objects typically appear within the context of
other objects rather than in isolation. It is, therefore, important to
understand how cortical neurons encode multiple objects. Ex-
perimental studies suggest that in many cortical areas, neural
responses to the presentation of multiple stimuli can be success-
fully described as a linear or nonlinear combination of the re-
sponses to the individual stimuli. In inferior temporal (IT)
cortex, for example, responses of many individual neurons to
pairs and triplets of objects are well described by the average of
their responses to individual stimuli (Zoccolan et al., 2005, 2007).
A similar weighted averaging model also provides a good descrip-
tion of the responses of motion-selective middle temporal (MT;
Recanzone et al., 1997; Britten and Heuer, 1999) and medial
superior temporal (MST) neurons (Recanzone et al., 1997) to
pairs of moving objects, responses of V4 neurons to composite
shapes consisting of several oriented line segments (Nandy et al.,
2013), population responses in V1 to simultaneously presented
gratings (Busse et al., 2009; MacEvoy et al., 2009), and at a larger
scale, fMRI responses to multiple objects in object selective area
LOC (MacEvoy and Epstein, 2009) and in V4 (Beck and Kastner,
2007).

In working memory and associative learning tasks, when mul-
tiple stimuli have to be stored in memory simultaneously, re-
sponses of single neurons in prefrontal cortex are again a
potentially complex function of multiple stimuli as well as other
task parameters (Duncan, 2001; Warden and Miller, 2007, 2010).
Such “mixed selectivity” has been argued to be crucial for suc-
cessful performance in context-dependent behavioral tasks
(Rigotti et al., 2010, 2013). However, mixed selectivity is not
unreservedly beneficial (Barak et al., 2013). By mapping two sim-
ilar points in the input space to points that are farther apart in the
output space, stimulus mixing can make them more easily dis-
criminable. The same, however, applies to noisy versions of the
same stimulus that one would not want to make more discrim-
inable, thus creating a problem of generalization or robustness
against noise (Barak et al., 2013). The extent of this problem for
commonly observed forms of stimulus mixing in the brain is
unknown and an analysis of what types of mixing are more or less
vulnerable to this problem is lacking.

In this article, using both analytical and numerical tools, we
present a systematic analysis of some common forms of stimulus
mixing observed in cortical responses with regard to their conse-
quences for stimulus encoding in the presence of neural variabil-
ity. We show that some of these common mixing rules, such as
weighted averaging, can be profoundly harmful for stimulus en-
coding. Another commonly observed, divisive form of stimulus
mixing (Allman et al., 1985; Cavanaugh et al., 2002) can also be
harmful for stimulus encoding, although much less so than
weighted averaging. We also derive mathematical conditions that
must be satisfied for unharmful mixing of stimuli, and provide
geometric explanations for what makes particular forms of stim-
ulus mixing more or less harmful than others.
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Materials and Methods
For ease of reference, Table 1 lists the frequently used symbols in the
article.

Derivation of the Fisher information matrix
We use a multivariate Gaussian distribution to model neural variability.
For a Gaussian distribution, the ijth term of the Fisher information ma-
trix (FIM) is given by the following (Abbott and Dayan, 1999):

Iij � Iij,mean � Iij,cov

�
�fT

�si
Q�1

�f

�sj
�

1

2
Tr�Q�1

�Q

�si
Q�1

�Q

�sj
� , (1)

where f is a column vector of the mean responses of all neurons in the
population. In the linear mixing model (see Results), the mean response
of a neuron k to a pair of stimuli (s1, s2) is assumed to be a weighted
average of its mean responses to each individual stimulus alone (Eq. 73).
The individual tuning functions describing the mean responses of neu-
rons to single stimuli are assumed to be von Mises:

f�s; �� � � exp ���cos �s � �� � 1�� � 	, (2)

where �, �, and 	 are the tuning function parameters and � is the neu-
ron’s preferred stimulus. Here and in the rest of this paper, differences
between circular variables should always be understood as angular dif-
ferences. The covariance matrix Q can be expressed as Q � S R S, where
S is a diagonal matrix of the standard deviations (SDs) of neural re-
sponses and R is the correlation matrix. In our problem, R has a block
structure:

R � �A B
B A� (3)

with A representing the correlations between the neurons within the
same group and B representing the across-group correlations. We as-
sume that within-group correlations decay exponentially with the angu-
lar difference between the preferred stimuli of neurons:

Akm � 
km � �1 � 
km�c0 exp �� ��k � �m�
L �, (4)

where 
 is the Kronecker delta function. Across-group correlations are
simply scaled versions of the within-group correlations:

Bkm� � �c0 exp �� ��k � �m��
L �. (5)

The inverse of the covariance matrix is given by Q � 1 � S � 1R � 1S � 1.
Since S is diagonal, its inverse is straightforward. The inverse of R is less
so. From Equation 3, blockwise inversion of R yields:

R�1 � � � A � BA�1B��1 � A�1B� A � BA�1B��1

� A�1B� A � BA�1B��1 � A � BA�1B��1 � .

(6)

Importantly, A and B are circulant matrices, hence they are both diago-
nalized in the Fourier basis. This implies that Equation 6 can be written as
follows:

R�1 � �U 0
0 U�

� � �Ã � B̃Ã�1B̃��1 � Ã�1B̃�Ã � B̃Ã�1B̃��1

� Ã�1B̃�Ã � B̃Ã�1B̃��1 �Ã � B̃Ã�1B̃��1 �
� �U� 0

0 U�� , (7)

where U is the unitary discrete Fourier transform matrix with entries
Ukj � exp �� 2ikj/n�/�n (where n is the number of neurons in each
group), U � is its conjugate transpose, and Ã and B̃ are diagonal matrices
of eigenvalues of A and B, respectively, which can be found by taking the
discrete Fourier transforms (DFT) of the first columns of A and B.

Let us denote ã � diag�Ã� and b̃ � diag�B̃� to be the diagonals of Ã
and B̃. Note that because Ã and B̃ are diagonal matrices:

��Ã � B̃Ã�1B̃��1�kk � Ckk �
1

ãk �
b̃k

2

ãk

�
ãk

ãk
2 � b̃k

2. (8)

Similarly:

��Ã�1B̃�Ã � B̃Ã�1B̃��1�kk � Dkk � �
b̃k

ãk
2 � b̃k

2. (9)

Poisson-like noise
We first derive Imean and Icov for a Poisson-like noise model where the
mean responses of neurons are equal to their variance.

Derivation of Imean. We can write down the first term of the Fisher
information matrix as follows:

Iij,mean �
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�sj
�
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�sj
, (10)

where S1 and S2 are diagonal matrices of the SDs �k of the responses of
neurons in the first and second group, respectively. For Poisson-like
noise, �k � �fk. In the following we denote by gi the vector whose kth
entry is equal to �k

�1 �fk/�si, i.e., the derivative of the kth neuron’s mean
response with respect to si divided by the SD of its variability, where k
ranges only over the neurons in the first group. Similarly, we denote by hi

the vector whose kth entry is equal to �k
�1�fk/�si, but where k now ranges

over the neurons in the second group only.
With this notation, we can rewrite Equation 10 as follows:

Iij,mean � �g̃i�TCğj � �h̃i�TDğj � �g̃i�TDh̆j � �h̃i�TCh̆j, (11)

where g̃i � �nUgi and ği � U�gi/�n represent the DFT and the
inverse DFT of gi, respectively. Similarly, h̃i and h̆i are the DFT and the

Table 1. List of frequently used symbols

Symbol Meaning

n Number of neurons per group
Iij ijth term of the Fisher information matrix
f Column vector of the mean responses of all neurons
si ith stimulus
	s � � s1 � s2� Angular distance between two stimuli
�k Preferred stimulus of kth neuron
R Correlation matrix
S Diagonal matrix of SDs
Q, 
 Covariance matrix of neural responses
� Gain of tuning functions (Eq. 2)
c0 Maximum noise correlation between neurons (Eq. 74)
L Correlation length scale parameter (Eq. 74)
� Scaling factor for across-group correlations (Eq. 75)
w Mixing weight in the linear mixing model (Eq. 73)
�w

2 Variance of the distribution over mixing weights
U The unitary DFT matrix
ã DFT of a vector a
ă Inverse DFT of a vector a
N Set size (number of encoded stimuli)
� Exponent in the nonlinear mixing model of Britten

and Heuer, 1999 (Eq. 78)
kw Divisive normalization scaling factor (Eq. 79)
J Jacobian matrix for the mean responses of the

neurons (Eq. 53)
K � Tr�JTJ� Total resource, i.e. the sum of the squares of the

derivatives in J
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inverse DFT of hi. Recall also that C and D are diagonal matrices defined
in Equations 8 and 9, respectively. Note that there are different conven-
tions on how to compute the DFT and the inverse DFT; our usage is
consistent with MATLAB’s implementation offft andifft functions.

The scaling of Iij,mean with n is similar to the corresponding scaling
relationship in the case of the encoding of a single stimulus analyzed
previously in Sompolinsky et al. (2001) and in Ecker et al. (2011): for
a homogeneous population, Equation 11 saturates to a finite value in
the presence of noise correlations (c0 � 0), but diverges for an inde-
pendent population (c0 � 0). A detailed analysis of the asymptotic
behavior of Imean is provided below for the simpler case of additive
noise.

Derivation of Icov. We now derive the second term of the FIM, Iij,cov. We

first recall that Q � SRS and then note that
�Q

�si
� �iSRS � SR�iS where

we use the shorthand notation �iS to denote
�S

�si
. We then have the

following:
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1

2
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�sj
� �

1

2
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�
1

2
�Tr�S�1�iSS�1�jS� � Tr�S�1RS�1�iSR�jS�

� Tr�S�1RS�1�jSR�iS� � Tr�S�1�iSS�1�jS��, (12)

where in the second line we used the fact that the trace operator is
invariant under cyclic permutations of the products of matrices. We
now note that S�1�iSS�1� jS is a diagonal matrix and its trace is given
by the following:

Tr�S�1�iSS�1�jS� � �
k�0

n�1

pk
i pk

j � �
k�0

n�1

tk
i tk

j , (13)

where we introduced the notation pi for the vector consisting of
the diagonal entries of S1

�1�iS1 and ti for the diagonal of S2
�1�iS2. For

the second term on the right side in Equation 12, we have the
following:

Tr�S�1RS�1�iSR�jS� � Tr�U�V1
i U ÃU�V1

j UC�

� Tr�U�V1
i U B̃U�V2

j UD� � Tr�U�V2
i UB̃U�V1

j UD�

� Tr�U�V2
i U ÃU�V2

j UC�. (14)

where we denote V1
i � S1

�1�iS1 and V2
i � S2

�1�iS2. Note that the diag-
onals of V1

i and V2
i are the vectors pi and ti.

Considering the first term on the right side in Equation 14, we can
write it as follows:

Tr�U�V1
i UÃU�V1
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Ckk�conv�p̃i � �p̃j��, ã��k, (15)

where � is the Hadamard (element-wise) product and conv(�, �) denotes
the circular convolution of two vectors. From the first to the second line
above, we simply used the definition of the DFT of a vector. The third line
follows from the definition of the circular convolution. For vectors,
we use (�) � to denote element-wise conjugation (without transposition).
We can express the other terms in Equation 14 in a similar fashion. Thus,
Equation 14 becomes:

Tr�S�1RS�1�iSR�jS� �
1
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We can derive a similar expression for the third term in Equation 12:
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We now note that the first term on the right side of Equation 12 is equal
to the last term. Thus, putting it all together, Iij,cov can be written as
follows:
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(18)

As for Iij,mean, the scaling of Iij,cov with n is identical to the corresponding
scaling relationship studied in Ecker et al. (2011) for the case of encoding
a single stimulus: asymptotically Iij,cov scales linearly with n regardless of
the amount of correlations in the population.

Effects of heterogeneity in mixing weights in the linear mixing model on
Imean and Icov. For Poisson-like noise, it is difficult to analytically quantify
the effect of heterogeneity in mixing weights on Imean. Considering a
single neuron k, when there is heterogeneity in mixing weights, we have
the following:

gk
i � �k

�1�fk/�si �
�wi � 
wi� f��si; �k�

��wi � 
wi� f�si; �k� � �w�i � 
w�i� f�s�i; �k�
,

(19)

where we use 
wi and 
w�i to denote the random fluctuations around the
mean mixing weights (the subscript �i indicates the stimulus that is not
the ith stimulus). In this expression, it is not possible to separate out the
effect of mixing weights, as it is when encoding a single stimulus studied
in Ecker et al. (2011). This makes it difficult to compute expectations
over the random fluctuations of mixing weights.

Similarly, unlike in Ecker et al. (2011), heterogeneity in mixing weights
also affects the Icov term in our model. Again, this is because the kth
diagonal entry of S1

�1�iS1 is of the following form (a similar expression
holds for the diagonal entries of S2

�1�iS2):

pk
i �

1

2

�wi � 
wi� f��si; �k�

�wi � 
wi� f�si; �k� � �w�i � 
w�i� f�s�i; �k�
. (20)

The weights in the numerator and the denominator do not cancel in this
expression, as they do in the case of the encoding of a single stimulus
(Ecker et al., 2011). Unfortunately, because the random fluctuations ap-
pear in divisive form in the above expressions (and inside a further square

Orhan and Ma • Neural Population Coding of Multiple Stimuli J. Neurosci., March 4, 2015 • 35(9):3825–3841 • 3827



root nonlinearity in the expression for gk
i ), it is difficult to quantify the

effect of heterogeneity in mixing weights on Imean and Icov. Moreover,
the asymptotic variance of the optimal estimator, in its turn, is related to
the terms of the FIM through an additional nonlinearity (Eq. 21 below).

Because of these difficulties, we resort to sampling to quantitatively
account for the effect of heterogeneity in mixing weights on Imean and Icov

and on the asymptotic variance of the optimal estimator. In particular,
we draw the mixing weights of the neurons independently from beta-
distributions with mean w1 or w2 and variance �w

2 . The weights are then
plugged in Equation 11 for Imean and in Equation 18 for Icov. A mathe-
matical analysis of the effect of heterogeneity in mixing weights on the
FIM is given below for the simpler case of additive noise.

Asymptotic variance and correlation of optimal unbiased estimates. After
computing Imean and Icov, we find the asymptotic variance of the optimal
unbiased estimates of the individual stimuli and the correlation between
the two estimates as follows:

Var�ŝ1�s� �
I22

I11I22 � I12I21
�

I11

I11
2 � I12

2 (21)

Corr�ŝ1, ŝ2�s� � �
I12

�I11I22

� �
I12

I11
, (22)

where I11 and I12 can be written as the sum of the mean and covariance
contributions:

I11 � I11,mean � I11,cov (23)

I12 � I12,mean � I12,cov. (24)

We note that because the FIM is symmetric, I12 � I21, and for large n, I12

depends only on 	s � � s1 � s2 � and does not depend on the stimuli
themselves. Moreover, because of the circular symmetry of the stimuli
considered in this paper, I11 � I22, and I11 does not depend on the
stimuli for large n. In the following, we will refer to the inverse of the
asymptotic variance as encoding precision or, more commonly, as
encoding accuracy.

Scaling of the asymptotic variance with the mean response gain � and the
Fano factor. In the expression for Imean (Eq. 11), gi��� (this is because
each of its entries, �k

�1�fk/�si, scales as �� for Poisson-like noise). Sim-
ilarly, the other h and g vectors also scale as ��. Thus, each of the
summands in Equation 11 scales as �, and therefore the whole expression
scales as �. It is easy to see that Icov is independent of the gain (to see this,
note that the entries of the p and t vectors in Equation 18 are of the form
shown in Equation 20 in which the gain term cancels). Hence from
Equation 21, we see that the asymptotic variance should have a weaker
gain dependence than ��1. This means that a doubling of the gain leads
to a less than twofold increase in encoding precision. By a similar reason-
ing, it is easy to show that the asymptotic variance has a dependence on
the Fano factor (FF), which is weaker than FF (because Imean scales as
FF �1 and Icov is independent of FF). Again, this implies that halving the
Fano factor should lead to a less than twofold increase in encoding pre-
cision.

Additive noise: finite n
If the noise is assumed to be additive, the covariance matrix Q becomes
stimulus-independent; hence, Icov � 0. Furthermore, the expression for
Imean (Eq. 11) can be written in a more transparent form in this case,
because it becomes possible to separate out the effect of mixing weights in
the g̃ and h̃ vectors. Each of the terms on the right side of Equation 11 can
be expressed as a sum over different Fourier modes. Considering the
I12,mean term first, we have:

I12,mean �
1

n
��g̃1�TC�g̃2�� � �h̃1�T D�g̃2�� � �g̃1�TD�h̃2�� � �h̃1�TC�h̃2���

�
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n�2 �2w1w2�
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Ckkm̃k�m̃k exp ��2ik
/n��� � �w1
2 � w2

2�

� �
k�0

n�1

Dkk m̃k�m̃k exp ��2ik
/n����
�

1

n�2 �2w1w2�
k�0
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�m̃k�2 Ckk cos �2k
/n� � �w1
2 � w2

2�

� �
k�0

n�1

�m̃k�2 Dkk cos �2k
/n��, (25)

where � 2 is the variance of the additive noise, m is the vector of the
derivatives of the von Mises tuning functions (Eq. 2) with respect to s,
and 
 is an integer that expresses the difference between the two stimuli s1

and s2 in terms of the number of tuning function centers that separate
them. Because of the circular nature of the stimuli, the Fisher infor-
mation only depends on the angular distance between the stimuli.
Hence, without loss of generality, we assume s1 � 0 and thus the
derivatives in m are all evaluated at s � 0. In deriving Equation 25, we
used the fact that gi can be expressed as a scaled circular shift of gj by

 and similarly as a circular shift of hj. In the Fourier domain, a
circular shift corresponds to the multiplication of the kth Fourier
mode by exp ��2ik
/n�. In Equation 25, we made use of the fact that
m̃k � m̃N�k (due to the circular nature of the stimulus space) and the identity
exp �2ik
/n� � exp �2i�n � k�
/n� � 2 cos �2k
/n�.

Similarly, for the I11,mean term, we derive the following expression:

I11,mean �
1

n�2 ��w1
2 � w2

2� �
k�0

n�1

�m̃k�2 Ckk � 2w1w2�
k�0

n�1

�m̃k�2 Dkk�.

(26)

In addition, I22,mean � I11,mean and I21,mean � I12,mean as usual. Finally,
the asymptotic variance and correlation of estimates can be computed
using Equations 21 and 22 and recalling that for additive noise Icov � 0.

For the additive-noise model, if the neurons are assumed to be

independent, we can also write I11 � ��2
�fT

�s1

�f

�s1
� ��2		 �f

�s1
		2

and

I12 � ��2
�fT

�s1

�f

�s2
where � 2 denotes the common noise variance. Plug-

ging these in Equation 21, we obtain the following proportionality rela-
tion for the asymptotic variance of the optimal estimator:

Var�ŝ1�s��
� �f

�s1
�

2

� �f

�s1
�

4

� ��fT

�s1

�f

�s2
�2. (27)

Inverting this proportionality yields Equation 77 for the encoding preci-
sion, which is used below to provide a qualitative explanation for the
stimulus dependence of encoding accuracy.

Effect of heterogeneity in mixing weights on Imean. Heterogeneity in the
mixing weights can be accounted for by writing gi � �w � �w)�g� i

where we separated out the effect of mixing weights on gi (note that we
can do this for additive noise, but not for Poisson-like noise). In this
expression, w denotes the mean weight that is constant across the
neurons in the group and 
 w represents the stochastic component of
the weight vector that is different from neuron to neuron. We denote
the variance of the weights across the neurons by �w

2 . We first note
that heterogeneity in the mixing weights only affects the C terms in
I11,mean in Equation 11, because the weight fluctuations are assumed
to be uncorrelated across different groups and across the same group
but for different stimuli. With this in mind, from Equation 11, we
have the following:

I11,mean
het � � I11,mean

hom � �
w1 � g�1�TUCU��
w1 � g�1��

� �
w2 � h� 1�TUCU��
w2 � h� 1��

� I11,mean
hom � 
�

i, j,k
�
w1 � g�1�i

TUijCjjUjk
� �
w1 � g�1�k�
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� 
�
i, j,k

�
w2 � h� 1�i
TUijCjjUjk

� �
w2 � h� 1�k�
� I11,mean

hom � 
�
i, j

�
w1 � g�1�i
TUijCjjUji

��
w1 � g�1�i�
� 
�

i, j
�
w2 � h� 1�i

TUijCjjUji
��
w2 � h� 1�i�

� I11,mean
hom �

1

n��j
Cjj�
�

i
�
w1,ig� i

1�2� �
1

n��j
Cjj�

� 
�
i

�
w2,ih� i
1�2�

� I11,mean
hom �

�w
2

n ��
j

Cjj���
i

�g� i
1�2 � �h� i

1�2�, (28)

where I11,mean
hom is the Fisher information for a homogeneous population

derived above. In terms of O(1) quantities, we can express I11,mean
het � as

follows:

I11,mean
het � � I11,mean

hom � n�w
2 M, (29)

where M � �1/n2���
j
Cjj���i

�g� i
1�2 � �h� i

1�2�  O�1�. Thus, the effect

of heterogeneity is linear in the number of neurons per group. This
scaling is the same as the corresponding scaling relationship derived
previously in Ecker et al. (2011) for a neural population encoding a single
stimulus. In Ecker et al. (2011), it is further shown that the same scaling
holds for Poisson-like noise as well, but the variance �w

2 should, in that
case, be interpreted as the variance of ��, i.e., the square root of the gain
rather than the variance of the gain itself.

Additive noise: large n
In this section, we give a detailed analysis of the additive noise
scenario in the limit of large n. We first derive explicit expressions
for the C and D matrices (Eqs. 8 and 9) in the large n limit. To do this,
we first need to derive ã and b̃. It is convenient in this case to use
indices ranging from �(n � 1)/2 to (n � 1)/2. For the derivations to
be presented in this section, we adopt the following notation:
� � 2/n, � � exp ���/L� and � � exp ��i�jk�. For ã, we have:

ãk � �
j���n�1�/ 2

�n�1�/ 2 �
j � �1 � 
j�c0 exp �� ��j�
L �� exp ��i�jk�

� 1 � c0�
j�0

exp �� ��j�
L � exp ��i�jk�

� 1 � c0 �
j�1

�n�1�/ 2

exp �� �j

L ��exp ��i�jk� � exp �i�jk��

� 1 � c0 �
j�1

�n�1�/ 2

����j � ����1�j. (30)

We now take the sum of the two geometric series in the last equation.

Denoting � �
n � 1

2
� 1, we have the following:

ãk � 1 � c0�1 � �����

1 � ��
�

1 � ����1��

1 � ���1 � 2�. (31)

After a little bit of algebra and rearranging, we obtain:

ãk � 1 � c0

�� ��cos ��� � 1��k� � cos ���k�� � �cos ��k� � �2

1 � 2�cos ��k� � �2 ,

(32)

where we made repeated use of the identity exp ��i�� � exp �i���
2 cos ���. We now consider the large n value of the expression above by
keeping only terms of leading order in � � 2/n. We recall that

exp �x� � 1 � x � x2/2 � O�x3� and cos �x� � 1 � x2/2 � O�x4�.
The final result is as follows:

ãk � 1 �
c0n

L

1 � exp ��/L���1�k

k2 � L�2 . (33)

This expression is the same as the one derived in Sompolinsky et al.
(2001) for the same type of limited-range correlation structure. Proceed-
ing similarly for b̃k, we find the following expression:

b̃k � �c0�1 �
n

L

1 � exp ��/L���1�k

k2 � L�2 �. (34)

Plugging these expressions in Equations 8 and 9 for Ckk and Dkk and
considering the large n limit again, we arrive at the following large n
expressions for Ckk and Dkk:

Ckk �
1

c0�1 � �2��k
, (35)

Dkk � �
�

c0�1 � �2��k
, (36)

where we denote:

�k �
n

L

1 � exp ��/L���1�k

k2 � L�2 . (37)

By plugging these large n expressions for Ckk and Dkk in Equations 25 and
26, we obtain the following large n expressions for I11,mean and I12,mean for
the case of additive noise:

I11,mean �
w1

2 � w2
2 � 2�w1w2

n�2c0�1 � �2� �
k�0

n�1 �m̃k�2

�k
(38)

I12,mean �
2w1w2 � ��w1

2 � w2
2�

n�2c0�1 � �2� �
k�0

n�1 �m̃k�2 cos �2k
/n�

�k
. (39)

As in Sompolinsky et al. (2001), it can be shown that I11,mean and I12,mean

saturate to finite values when c0 � 0 and diverge for c0 � 0. To see this,
write �k � �k/n. Similarly, write �k � m̃k/n. Then, considering
I11,mean as an example, we have the following:

I11,mean �
w1

2 � w2
2 � 2�w1w2

�2c0�1 � �2� �
k�0

n�1 ��k�2

�k
. (40)

We note that �k  O�k�2�. Thus, if the power spectrum ��k�2 decays
sufficiently rapidly with k, e.g., ��k�2  O�k�p� with p � 3 (meaning that
the tuning function derivatives are sufficiently smooth), the sum above
remains O(1) for c0 � 0. An identical argument can be made for the sum
in I12,mean to show that I11,mean and I12,mean are both O(1) for c0 � 0
assuming sufficiently smooth tuning function derivatives.

The effect of stimulus mixing on encoding accuracy
We can now ask what the effects of changing various parameters are on
encoding accuracy in the case of additive noise. We first consider the
effect of stimulus mixing. Assuming w1 � w and w2 � 1 � w and ignoring
a common prefactor, which is always positive, we have (from Eqs. 25 and
26) the following:

I11,mean �G � �2w2 � 2w��X � Y� � X (41)

I12,mean �H � �2w2 � 2w��Z � T� � Z (42)

Var�ŝ1�s� �
G

G2 � H2, (43)

where we use the following abbreviations:

X � �
k�0

n�1

�m̃k�2 Ckk (44)
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Y � �
k�0

n�1

�m̃k�2 Dkk (45)

Z � �
k�0

n�1

�m̃k�2 Dkk cos �2k
/n� (46)

T � �
k�0

n�1

�m̃k�2 Ckk cos �2k
/n�. (47)

We now show that for the interval 0.5 � w � 1, the variance (Eq. 43) is a
decreasing function of w. Therefore, stimulus mixing always reduces
encoding accuracy and the stronger the mixing, the lower the encoding
accuracy. For this purpose, it is sufficient to consider the sign of the
derivative of Equation 43 with respect to 2w 2 � 2w only, because using
the chain rule, the derivative with respect to w can be obtained by mul-
tiplying with 4w � 2, which is always positive in the interval 0.5 � w � 1.
Denoting the derivatives with respect to 2w 2 � 2w with a prime, we
first observe the following: (1) G� � X � Y � 0; (2) H� � Z � T; (3)
G� � � H��; and (4) G � 0. These are all easy to verify using the definitions
in Equations 44 – 47 and the large n expressions for C and D (Eqs. 35–36).

Now, taking the derivative of the variance (Eq. 43) and ignoring the
denominator in the derivative, which is always non-negative, we have the
following:

Var�ŝ1 � s� � G��G2 � H2� � �G2 � H2��G
� G��G2 � H2� � �2GG� � 2HH��G
� � G��G2 � H2� � 2GHH�
� � �H���G2 � H2� � 2G�H��H��
� � �H���G � �H��2 � 0 (48)

Thus, the derivative is always negative and the variance is a decreasing
function of w.

The effect of noise correlations on encoding accuracy
In this section, we separately consider the effects of the three parameters
determining the shape and the magnitude of noise correlations in the
model: c0, �, and L. Our strategy is to consider the derivative of the
variance with respect to the parameter of interest and look at the sign of
the derivative for different settings of the parameters. When the de-
rivative is negative, the variance is a decreasing function of the pa-
rameter of interest; whereas a positive derivative means that the
variance is an increasing function of the parameter of interest. We use
the large n expressions for the matrices C and D (thus for I11,mean,
I12,mean, and the asymptotic variance as well) in the analyses to be
presented below.

The effect of c0. We first consider the effect of changing c0, the maxi-
mum correlation between any two neurons in the population. The anal-
ysis of the effect of c0 is easier than the other two cases, because from the
large n expressions for I11,mean and I12,mean (Eqs. 38 and 39), we see that
the effect of c0 completely factorizes in these expressions and that they are
both proportional to 1/c0. Thus, the variance is proportional to c0. Hence,
increasing c0 is always harmful for encoding accuracy. This result is con-
sistent with earlier results for homogeneous neural populations with
additive noise encoding a single stimulus (Sompolinsky et al., 2001; Ecker
et al., 2011).

The effect of �. We next consider the effect of �, the scaling parameter
for across-group correlations. � appears in a factorized form in I11,mean

and I12,mean in the large n limit (Eqs. 38 and 39) and therefore the deriv-
ative of the variance with respect to � is relatively straightforward to
compute. Figure 3A shows the sign of �Var�ŝ1�s�/�� for different values
of w, 	s, and �.

The effect of L. To investigate the effect of correlation length scale L on
encoding accuracy, we proceed similarly. In Figure 3B, we plot the sign of
�Var�ŝ1�s�/�L for different values of w, 	s, and L. This figure suggests that
there is a critical value of L around L � 0.6 below which the derivative is
always positive, suggesting that it is beneficial to decrease L in this
regime. On the other hand, above the critical value of L, the derivative
is always negative, suggesting that it is beneficial for encoding accu-
racy to increase L in this regime. The critical value of L decreases with
the concentration parameter of the tuning functions � (Eq. 2), but

does not depend on any other parameters of the encoding model. This
type of threshold-like behavior for the effect of correlation length
scale L is again consistent with a similar behavior reported in Sompo-
linsky et al. (2001).

Optimal linear estimator
For the optimal linear estimator (OLE), we first map the stimuli to
Cartesian coordinates, x � �cos �s1� sin �s1� cos �s2� sin �s2��, and
calculate the weight matrix W that minimizes the mean squared error
�x � x̂�2� between the actual and estimated stimuli. The optimal
weight matrix is given by the following: W � Qrr

�1Qxr where
Qrr � rTr� is the covariance matrix of the responses and Qxr � rTx�
is the covariance between the stimuli and neural responses (here  � �
denotes an average over both stimuli x and noisy neural responses r).
These averages were computed over 8192 random samples of x (gen-
erated from uniformly distributed s1 and s2 values) and r. The perfor-
mance of the estimator was then measured by numerically estimating
the mean squared error (MSE) for stimulus pairs of the form (�s, s)
with s � �0,/ 2�.

The nonlinear mixing rule of Britten and Heuer (1999)
For the nonlinear mixing model of Britten and Heuer (1999), the
mean response, fk, of a neuron to a pair of stimuli (s1, s2) is given by
Equation 78. We include a factor of 2 in the denominator in Equation
78 to make the neural gains approximately independent of �. Britten
and Heuer’s original equation does not include this factor. The deriv-
ative of the mean response with respect to the stimulus si is given by
the following:

�fk

�si
� a2�1/��f�s1; �k�

� � f�s2; �k�
��

1��

� f�si; �k�
��1f��si; �k�,

(49)

where f denotes the von Mises tuning function (Eq. 2) and f� its deriva-
tive. Given the mean responses and their derivatives with respect to each
stimulus, expressions similar to Equations 11 and 18 can be used to
compute the Fisher information matrix for the nonlinear mixing model
of Britten and Heuer (1999), taking into account that we assume an
unsegregated population for this case (see Results).

A divisive form of stimulus mixing
In the divisively normalized stimulus mixing model, the response of a
neuron in the first group is described by Equation 79. Responses of
neurons in the second group are similar, but with the roles of s1 and s2

reversed in the right hand side. In Equation 79, f�s; �� is the von Mises
tuning function defined in Equation 2 and the weighting profile
w��k, �k�� is a normalized von Mises function given by the following:

w��k, �k�� �
exp��w�cos ��k � �k�� � 1��

�k�
exp ��w�cos ��k � �k�� � 1��

. (50)

The derivatives of the mean response fk with respect to s1 and s2 are given
by the following:

�fk

�s1
�

2f�s1; �k� f��s1; �k�

	 � kw�k�
w��k, �k�� f�s2; �k��

2
(51)

�fk

�s2
� �

2f�s1; �k�
2�k�

w��k, �k�� f��s2; �k�� f�s2; �k��

�	 � kw�k�
w��k, �k�� f�s2; �k��

2�2
,

(52)

where f� denotes the derivative of the von Mises tuning function.
Equations 11 and 18 for the Fisher information matrix are still valid

for the divisively normalized mixing model with the difference that
the mean responses of neurons and their derivatives with respect to
the two stimuli are computed according to Equations 79, 51, and 52,
respectively.
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Figure 10 shows the effect of varying the divisive normalization scaling
factor kw and the across-group neural correlations � on encoding accu-
racy for both the divisively normalized mixing model and a model where
the off-diagonal terms in the Fisher information matrix (Iij with i � j)
were set to zero, but the diagonal terms were the same as in the divisively
normalized mixing model. As explained in Results, this latter model
eliminates stimulus mixing, but preserves the neuron-by-neuron re-
sponse gains in the divisively normalized model.

Stimulus mixing is not always harmful for encoding accuracy
We first analyze the general stimulus mixing problem with a two-
dimensional toy model. We imagine two “neurons” mixing the two stim-
uli s1, s2 according to f1(s1, s2) and f2(s1, s2), respectively. The responses of
the two neurons are given by r1 � f1�s1, s2� � �1 and r2 � f2�s1, s2�
� �2, where �1 and �2 are Gaussian random variables with variance � 2

and correlation �. Thus, in the following analysis, we assume stimulus-
independent additive noise. We denote the Jacobian matrix for the mean
responses of the neurons by J:

J � �
�f1

�s1

�f1

�s2

�f2

�s1

�f2

�s2

�. (53)

As explained in the Results section, one can think of J as a mixing matrix
describing the sensitivity of each neuron to changes in each stimulus.
The Fisher information matrix is given by IF � JT
�1J where � is the
covariance matrix of the response noise. The inverse of IF gives the
asymptotic covariance matrix of the maximum likelihood estimator.
To find the optimal mixing matrix J, we minimize the trace of IF

�1,
i.e., Tr�IF

�1� � Tr�J�1
J�T� with respect to J, subject to the con-
straint that the sum of the squares of the derivatives in J be a finite
constant K, i.e., Tr[JT J] � K.

We find the optimal J by the method of Lagrange multipliers. The
objective function is given by the following:

L � Tr�J�1
J�T� � ��Tr�JTJ� � K� (54)

and the required derivatives are as follows:

�L
�J

� � 2J�T J�1
J�T � 2�J (55)

�L
��

� Tr�JTJ� � K. (56)

Setting these to zero and rearranging, we get the following equations:

JJTJJT � Y2 � ��1
 (57)

Tr�JTJ� � Tr�Y� � K, (58)

where we denote JJT by Y. By taking the eigendecomposition of the
right-hand side of Equation 57, we obtain:

Y � ���1 Pdiag���1, ��2� P�1, (59)

where P is the matrix of eigenvectors of � and �1 and �2 are its eigenvalues.
Becausethetraceofamatrix isequal tothesumofitseigenvalues, fromEquation

58, we get ��1

�
� ��2

�
� K or ���1 � K����1 � ��2�. Plugging

this in Equation 59:

Y �
K

��1 � ��2

Pdiag���1, ��2�P�1. (60)

The matrix of eigenvectors and the eigenvalues of the response covari-
ance matrix � are given by the following:

P � �� 1 1
� 1 1� (61)

�1 � �2�1 � ��, �2 � �2�1 � ��. (62)

Plugging these expressions in Equation 60 and simplifying, we get:

Y �
K

2� 1
1 � �1 � �2

�

1 � �1 � �2

�
1 �. (63)

Now, the Y matrix can be written as follows:

Y � ��f1

�f2
� ��f1

T �f2
T� � � ��f1�

2 �f1 � �f2

�f1 � �f2 ��f2�
2 �, (64)

where �f1 and �f2 denote the gradients of f1 and f2, respectively. The
cosine of the angle �� between these two gradients is given by the
following:

cos �� �
�f1 � �f2

��f1� ��f2�
�

1 � �1 � �2

�
. (65)

The optimal solution is thus to set the gradients to have equal norm
��K/ 2� and the angle between them to �� with cos �� as given in Equa-
tion 65. Because cos is an even function, �� and � �� are both solutions.
Figure 12A plots the positive solution as a function of �.

The solution of the two-dimensional toy model can be readily gen-
eralized to models with more than two neurons under certain as-
sumptions. Consider, for instance, two groups of neurons with
responses given, respectively, by:

f1,k�s1, s2� � w1f�s1; �k� � w2f�s2; �k� (66)

f2,k��s1, s2� � w3f�s1; �k�� � w4f�s2; �k��. (67)

This model is very similar to the linear mixing model analyzed in detail in
this paper (see Results), with the only difference being that the restriction
for the weights to be positive and symmetric between the groups is now
lifted. Assuming s1 � s2 � s and an additive noise model, the problem
of finding the optimal weights w1, w2, w3, and w4 subject to a total power
constraint on the derivatives, i.e.:

�w1
2 � w2

2 � w3
2 � w4

2��
k

f��s; �k�
2 � P (68)

can be directly translated into the two-dimensional problem with the
following transformation:

J � �w1 w2

w3 w4
� (69)


�1 � �f� 0
0 f�� Q�1�f� 0

0 f��T

(70)

K �
P

�k
f��s; �k�

2
, (71)

where f� is a row vector of the derivatives, df�s; �k�/ds, 0 is a row vector of
zeros, and Q is the covariance structure of the neurons (e.g., Q � SRS
with R as given in Eq. 3). In particular, for uncorrelated neurons (diag-
onal Q), we find that the optimal solution is to set the weight vectors
�w1, w2� and �w3, w4� such that they have equal norm and are orthogonal
to each other.

For the more general case of n neurons encoding two stimuli, as far as
we know, there is no closed-form solution for the optimal mixing matrix
subject to a constraint on the total power of the derivatives. We thus solve
this more general problem numerically. Figure 11 shows three distinct
solutions for n � 16 with both a diagonal covariance matrix (Fig. 11A)
and a limited-range correlation structure (Fig. 11B) as in Equation 4 with
c0 � 0.3 and L � 2.

Similarly, for the linear encoding model (Eqs. 66 and 67), when
s1 � s2, it does not seem possible to reduce the problem of finding the
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optimal mixing weights w1, w2, w3, and w4 to
our two-dimensional toy problem. Thus, we
solve this optimization problem numerically as
well. Because IF

�1 depends on 	s, we minimize
the following objective function in this case:

Tr�IF
�1�	s�����Tr�IF

�1�	s��d	s,

(72)

where the integral is approximated by the aver-
age of Tr�IF

�1�	s�� over 21 	s values uniformly
spaced in the interval �0, �. The total resource
K is assumed to be equal to the number of neu-
rons and the noise is assumed to be additive
(and the noise variance identical for all neu-
rons) both in the arbitrary encoding model and
in the linear encoding model. All numerical
optimization problems were solved using the
genetic algorithm routines in MATLAB’s
Global Optimization Toolbox.

Parameter values for the results reported in
the figures
For our main results, reported in Figures 1, 2, 4,
and 7–10, we use a Poisson-like noise model
and a limited-range noise correlation structure
with parameters c0 � 0.3 and L � 2, which is
consistent with the small but broad noise cor-
relations typically observed in the visual corti-
cal areas (Cohen and Kohn, 2011). For the
tuning function parameters, we again use val-
ues broadly consistent with response proper-
ties of neurons in the visual cortex: � � 20, � �
2, 	 � 0 (Ecker et al., 2011). For convenience,
we assume tuning function centers that are
uniformly spaced between 0 and 2.

In Figures 3, 11, and 12, we use an additive
Gaussian noise model. The additive-noise as-
sumption is needed to establish the analytic results regarding the effects
of varying the parameters of the encoding model on encoding accuracy,
as well as for the solution of the optimal mixing model presented at the
end of the Results section.

For the number of neurons, we used as large a number of neurons as
possible. Specifically, in Figures 1, 2, 4, 6, and 10, we use n � 4096
(number of neurons per group). In Figure 9, since there is only a single,
unsegregated population, we use n � 8192. Due to computational costs,
we had to use a smaller number of neurons per group in Figures 7 and 8:
in Figure 7, n � 1024 (note this means that the total number of neurons
is 2048 for set size N � 2 and 6144 for N � 6) and in Figure 8, n � 1024.

Other parameter values specific to each figure are as follows: in Figure
9, a � 1, b � 0 (parameters of the nonlinear mixing model of Britten and
Heuer, 1999). In Figure 10, 	 � 10, �w � 2 (divisive normalization
parameters). In Figure 12, for the linear encoding model, tuning function
parameters are the same as those reported above for Figure 1.

Results
Linear mixing
We consider a population of neurons encoding a pair of stimuli
(s1, s2) where the mean responses of the neurons are expressed as
a weighted average of their responses to the individual stimuli:

fk�s1, s2� � w1f�s1; �k� � w2f�s2; �k�. (73)

Here w1 and w2 are the mixing weights and �k is the preferred
stimulus of neuron k. We call this type of mixed selectivity linear
mixing, although it should be noted that the mean response fk(s1,
s2) is linear only in the individual responses and not in the stimuli
themselves, therefore linear mixing in this sense is different from
what is referred to as linear mixing in Rigotti et al. (2013). Neural

responses of this type have been observed throughout the cortex
(Recanzone et al., 1997; Britten and Heuer, 1999; Zoccolan et al.,
2005, 2007; Beck and Kastner, 2007; Busse et al., 2009; MacEvoy
and Epstein, 2009; MacEvoy et al., 2009; Nandy et al., 2013). It is,
thus, of considerable interest to understand the information-
encoding consequences of this type of mixed selectivity. For our
analysis, we separate the neurons into two groups such that neu-
rons in the first group have a larger weight for the first stimulus
and neurons in the second group have a larger weight for the
second stimulus. For simplicity, we assume symmetric weights
for the two groups; i.e., if the mixing weights associated with s1

and s2 are w1 and w2, respectively, for the first group (with w1 �
w2), they are w2 and w1 for the second group. We initially con-
sider the case where all neurons within the same group have the
same weights for the two stimuli, but later consider the effects of
heterogeneity in mixing weights.

To model variability in neural responses, unless otherwise
noted, we use a biologically realistic, Poisson-like noise model,
where the variance of the noise is equal to the mean response (see
Materials and Methods). We assume that neural variability is
correlated across the population. Specifically, within-group cor-
relations between neurons decay exponentially with the distance
between their preferred stimuli, consistent with experimental
measurements of noise correlations throughout the visual cortex
(Cohen and Kohn, 2011):

Rkl � 
kl � �1 � 
kl�c0 exp �� ��k � �l�
L �, (74)

A

B

C

Figure 1. Analysis of the linear mixing model. A, The asymptotic variance of the optimal estimator, Var�ŝ1�s), as a function of
the mixing weight w. The left plot shows the optimal variance for a small � value (�� 0.1), and the right plot, for a large � value
(�� 0.9). B, The effect of heterogeneity in mixing weights on encoding accuracy. The weights are drawn from a beta distribution
with mean 0.6 or 0.4, and variance �w

2 . The left and the right plots show the optimal variance for two different � values. To aid the
interpretation of �w

2 values, the inset on the left shows the weight distributions for three different �w
2 values. C, The asymptotic

variance of the optimal estimator as a function of �. The left plot shows the optimal variance for a strong stimulus mixing regime
(w � 0.6) and the right plot for the no stimulus mixing regime (w � 1). Different curves in each plot correspond to six different
	s � � s1 � s2� values indicated in the inset in A, with lighter colors corresponding to smaller 	s values. Other parameter
values are listed in Materials and Methods.
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where 
 is the Kronecker delta function. Across-group correla-
tions are simply scaled versions of within-group correlations:

Rkl� � �c0 exp �� ��k � �l��
L �, (75)

where 0 � � � 1 represents the scaling factor. In this paper, we
only consider stimuli defined over circular spaces due to their
conceptual simplicity and analytical tractability. Stimuli defined
over bounded spaces would introduce edge effects where stimuli
toward the edges are encoded with less accuracy than stimuli
toward the center. This can be explained entirely by a decrease in
the effective number of neurons covering the stimuli toward the
edges and hence is uninteresting for our considerations. We do
not expect any of our main results concerning stimulus mixing to
depend on the choice of a circular rather than a bounded stimulus
space.

Consequences of linear mixing
We derived a mathematical expression for
the Fisher information matrix (FIM) of
the encoding model described above. The
main interest in deriving the FIM comes
from the fact that, by the Cramér–Rao
bound, the inverse of the FIM provides a
lower bound on the covariance matrix
of any unbiased estimator of the stimuli
and expresses the asymptotic covariance
matrix of the maximum-likelihood esti-
mator. From the inverse of the FIM, we
obtained expressions for the asymptotic
variance of the optimal estimates of s1

and s2 and the correlation between the
estimates (see Materials and Methods).

We then asked how changes in differ-
ent parameters affect encoding accuracy,
i.e., the inverse of the asymptotic vari-
ance of the estimates. Considering the
effect of stimulus mixing first and as-
suming w1 � w and w2 � 1 � w with
0.5 � w � 1, we find that increased
stimulus mixing (i.e., decreasing w) re-
duces encoding accuracy and that these
reductions can be substantial (Fig. 1A).
The harmful effect of stimulus mixing
for encoding accuracy depends on the
similarity between the two stimuli (Fig.
1A), being more severe for more similar
stimuli (smaller 	s � � s1 � s2�). For
some stimulus pairs, increased stimulus
mixing can cause several orders of magni-
tude reductions in encoding accuracy
(Fig. 1A). It is easy to see that the total
response across the whole population is
independent of the mixing weight w.
Therefore, the reduction in encoding ac-
curacy with increased stimulus mixing is
due entirely to stimulus mixing itself,
rather than any reduction in the overall
response level.

We next analyzed the effect of heter-
ogeneity in mixing weights by assuming
that the weights of different neurons are
drawn from a distribution with mean w

or 1 � w and variance �w
2 (see Materials and Methods). Such

heterogeneity in the mixing weights partially alleviates the
harmful effects of stimulus mixing (Fig. 1B). Increasing the
across-group neural correlations, i.e., increasing �, can also
counteract the effects of stimulus mixing under certain parame-
ter regimes (Fig. 1C).

Effects of stimulus mixing, heterogeneity in mixing weights, and
across-group neural correlations on encoding accuracy
The presence of Poisson-like noise makes an analytic quantifica-
tion of the effects of stimulus mixing, heterogeneity in mixing
weights, and across-group neural correlations on the asymp-
totic variance difficult. However, for the parameter regimes re-
ported in Figure 1, we numerically checked and confirmed the
following: (1) increasing stimulus mixing always increases the
asymptotic variance (Fig. 1A); (2) increasing the heterogeneity of
mixing weights generally reduces the asymptotic variance, except

A B

Figure 2. Comparison of the effect of stimulus mixing on the asymptotic variance with the effects of halving the mean
response gain �, or doubling the Fano factor (FF). A, Weak across-group correlations (� � 0.1). B, Strong across-group
correlations (� � 0.9). The asymptotic variance has the same scaling with � as it does with FF �1. The results shown in this
figure are for 	s � , for which the effect of stimulus mixing is among the weakest. For smaller 	s values, stimulus
mixing generally has a much larger effect. The parameter values for the baseline results (shown in black) are the same as
those reported for Figure 1 (see Materials and Methods).

A B

Figure 3. A, The sign of
dVar�ŝ1�s�

d�
as a function of �, 	s, and w. Red dots indicate parameter combinations for which the

derivative is positive, blue dots indicate negative derivatives. w is varied from 0.51 to 0.99, � is varied from 0 to 0.99, and 	s is

varied from 0 to , all on a linear scale. L � 2 for the results shown in this plot. B, The sign of
dVar�ŝ1�s�

dL
as a function of L, 	s,

and w. w is varied from 0.51 to 0.99, L is varied from 10 �6 to 2, and 	s is varied from 0 to . The results shown in this figure are
for the additive noise model.
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for a small number of cases where this pat-
tern is reversed for very close �w

2 values
due to stochasticity in sampling (Fig. 1B);
and (3) for all 	s, the increase in variance
caused by halving w1 � w from 1 to 0.5 is
always greater than the increase in vari-
ance caused by halving the mean response
gain or doubling the Fano factor (FF). Fig-
ure 2 compares the effect of stimulus mix-
ing on the asymptotic variance with the
effects of halving the mean response gain
or doubling the FF. The results shown in
Figure 2 are for 	s � , for which the
effect of stimulus mixing is among the
weakest. For smaller 	s values, stimulus
mixing generally has a much larger effect
on the variance than the effect of changing
the gain or the FF. This result could ex-
plain why attention acts primarily by
stimulus selection, which in our model
corresponds to changing the mixing
weights, rather than simply through noise
reduction or gain increase (Pestilli et al.,
2011), because the former mechanism
typically leads to a much larger improve-
ment in encoding accuracy than the latter
mechanisms (see Discussion).

Analytical results for an additive
noise model
To develop a better understanding of the
effects of changing the parameters of the
encoding model on encoding accuracy,
we supplement the numerical results for
Poisson-like noise with analytical results
for a simpler additive noise model. In the
additive noise model, the noise variance,
rather than being equal to the mean re-
sponse as in the Poisson-like noise model,
is assumed to be the same for all neurons
independent of their mean responses. In
Materials and Methods, for the additive
noise model and in the limit of a large
number of neurons, we mathematically
show that increased stimulus mixing al-
ways reduces encoding accuracy, in-
creased heterogeneity in mixing weights
always improves encoding accuracy,
whereas the conditions under which in-
creased neural correlations between the
groups, i.e., increasing �, improves encoding accuracy are slightly
more complicated. In Figure 3A, we plot the sign of �Var�ŝ1�s�/��
for different values of w, 	s, and �. A positive sign means that the
asymptotic estimation variance is an increasing function of � (i.e., it
is harmful to increase �), whereas a negative sign means that the
asymptotic estimation variance is a decreasing function of the pa-
rameter. This figure shows that the derivative is always negative for
very small values of 	s, suggesting that it is beneficial (in terms of
encoding accuracy) to increase the across-group correlations in this
case. For other values of 	s, the sign depends on � and w, being more
likely to be negative for larger � and larger w values. A detailed
analysis of the effects of changing the other parameters of the encod-
ing model under the additive noise assumption can also be found in

the Materials and Methods section. In summary, this analysis shows
that increasing the maximum neural correlation, c0, is always harm-
ful for encoding accuracy, whereas for the correlation length scale L,
there is a critical threshold below which it is always harmful to in-
crease L and above which it is always beneficial to increase L (Fig. 3B).

Correlations between the estimates
The FIM also predicts prominent stimulus-dependent correlations
between the estimates of the two stimuli. The asymptotic corre-
lation between the optimal estimates is given by Equation 22 (see
Materials and Methods). In Figure 4, we show the correlations
between the two estimates under different parameter regimes,
using the Poisson-like noise model. Figure 4, A and B, shows the
effects of changing w and �, respectively, on the correlation be-

A

B

Figure 4. The asymptotic correlation between the estimates, Corr�ŝ1, ŝ2�s), as a function of 	s. A, The effect of changing w.
The left plot shows correlations for � � 0.1, and the right plot shows correlations for � � 0.9. Different curves in each part
correspond to different w values indicated in the inset on the left. B, The effect of changing �. The left plot shows correlations for
a strong stimulus mixing regime (w � 0.6), and the right plot shows correlations under the no stimulus mixing regime (w � 1).
Different curves in each plot correspond to different � values indicated in the inset on the left.

Figure 5. Geometric intuition for the effects of w and � on the variance of estimates in a simplified two-neuron model (Eq. 76).
Maximum-likelihood estimates of the stimuli are represented by the blue dots, as r1 and r2 vary stochastically for a particular
stimulus pair (s1, s2). Dot size represents the probability of the corresponding estimates.
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tween the estimates. Psychophysical tasks where subjects have to
estimate multiple stimuli simultaneously are uncommon (see
Orhan and Jacobs (2013) for an exception), but Figure 4 suggests
that the pattern of correlations between the estimates obtained
from such tasks can be potentially informative about the optimal-
ity of the subjects’ decoding methods and about possible param-
eter regimes for their encoding models.

A reduced model to understand the effects of stimulus mixing
To develop a geometric intuition for the effects of stimulus mix-
ing and across-group neural correlations on encoding accuracy,
we consider a simpler, reduced version of the linear mixing
model. In this model, neurons in each group are reduced to a
single neuron. In addition, we model the responses of these two
“reduced neurons” linearly, ignoring the nonlinearity introduced
by the tuning function, f. Thus, the responses of the two neurons
are modeled as follows:

r1 � ws1 � �1 � w�s2 � �1, r2 � �1 � w�s1 � ws2 � �2,

(76)

where �1 and �2 are zero-mean random variables with correlation �,
representing correlated noise in the responses. A given (r1, r2) pair
describes two lines in the (s1, s2) plane: r1 � ws1 � (1 � w)s2 and r2 �
(1 � w)s1 � ws2. The maximum likelihood estimate of the stimuli is
given by the intersection of these two lines. As r1 and r2 vary stochas-
tically from trial to trial due to noise, the lines, as well as their inter-
section point, change. If there is any stimulus mixing (w � 1), the
geometry of the lines dictates that the estimates should be stretched
along the antidiagonal direction, making them more variable than
under the no mixing condition (w � 1) for the same (r1, r2) values.
This is illustrated in the middle plot in Figure 5 for w � 0.8 and � �
0. Increasing the stimulus mixing makes the slopes of the lines more
similar to each other, which stretches the intersection points even
further (Fig. 5, left) and increases their variance. Increasing the
across-group neural correlation �, on the other hand, makes the
intersection points along the diagonal more probable (Fig. 5, right),
counteracting the antidiagonal stretching caused by stimulus mixing
and decreasing the variance of the estimates.

Stimulus dependence of the variance
The dependence of the asymptotic variance of the optimal esti-
mates on 	s cannot be explained with the reduced model. To gain
some insight into the mechanism behind this dependence, we
consider the linear mixing model with additive noise and in-
dependent neurons. In this case, it can be shown that the
encoding precision is proportional to (see Eq. 27 in Materials
and Methods):

� �f

�s1
�

2

� �
�fT

�s1

�f

�s2

� �f

�s1
� �

2

, (77)

where � � � denotes the Euclidean norm
and f is a column vector of the mean re-
sponses of all neurons in both groups. In

the linear mixing model � �f

�s1
� does not de-

pend on 	s, hence the dependence of en-
coding precision on 	s is determined
solely by the magnitude of the inner prod-

uct
�fT

�s1

�f

�s2
: when the magnitude of this

inner product is large relative to the norms of the individual
vectors, i.e., when the derivative profiles with respect to s1 and s2

overlap more, the encoding precision becomes low. Figure 6

shows that
�f

�s1
and

�f

�s2
overlap more extensively for smaller 	s,

explaining why stimulus mixing is especially harmful for stimuli
with small 	s.

Although the simple proportionality relation above does not
hold in the case of Poisson-like noise (or for correlated neurons
for that matter), it qualitatively captures the stimulus dependence
of the asymptotic variance in Figure 1.

Generalization to more than two stimuli
It is straightforward to generalize the preceding linear mixing
model to more than two stimuli. However, deriving a simpli-
fied mathematical expression for the FIM, as was done for the
case of two stimuli, becomes infeasible for this case. Therefore,
we present results from numerically computed FIMs for up to
six stimuli.

To generate the mixing weights of different groups of neu-
rons, for each set size N, we first draw a random weight vector w,
uniformly distributed on the (N � 1)– dimensional probability
simplex, i.e., the region defined by �

i
wi � 1 and wi � 0. We then

generate an N � N circulant matrix W from the weight vector w.
The rows of this matrix, which are all circular permutations of w,
give the weight vectors of each group in the population. We gen-
erate 512 such weight matrices and, for each weight matrix, compute
the asymptotic variance of the optimal estimator from the inverse of
the Fisher information matrix for the particular stimulus configura-
tion where all the stimuli are identical, s1 � s2 � … � sN. The
number of neurons per group and the magnitude of noise corre-
lations between groups are held constant across set sizes in these
simulations. Similar to the results for N � 2, the estimation vari-
ance increases when the weight vector w becomes more uniform,
i.e., when different groups become equally responsive to all stim-
uli. To quantify the uniformity of the weight vectors, we use the
Shannon entropy of w treated as a discrete probability distribu-
tion. Figure 7A shows the asymptotic estimation variance as a
function of the Shannon entropy of the weight vector. When the
logarithm of the estimation variance is linearly regressed on the
logarithm of the set size N, we find a highly significant effect with
a positive slope of �0.82 (p � 0.0001), suggesting that the vari-
ance increases with set size (Fig. 7B). This result is not sensitive to
the particular way the weight matrices W are chosen and holds as
well for the case where the weight vectors of different groups in
the population, rather than being circular permutations of a sin-

A B

Figure 6. A, Derivatives of the mean responses with respect to s1 (black) and s2 (red) plotted for three different 	s values. For

all three plots, w � 0.6. B, The inner product
�fT

�s1

�f

�s2
as a function of 	s (blue line) and the points corresponding to the 	s values

shown in A are indicated by the open square signs.
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gle weight vector, are random samples
from the (N � 1)– dimensional probabil-
ity simplex (Fig. 7C). In this case, the lin-
ear regression of the logarithm of the
estimation variance on the logarithm of
the set size yields a highly significant ef-
fect with a positive slope of �2.2 ( p �
0.0001), again suggesting an increase in
the estimation variance with set size. This
increase is not caused by a reduction in gain
per stimulus, as the number of neurons per
group was held constant and the presented
stimuli were identical. Rather, it is due to an
increase with N in the mean normalized en-
tropy (normalized by the maximum possi-
ble entropy, i.e., log N) of weight vectors
drawn from a probability simplex (Nemen-
man et al., 2002). In other words, with in-
creasing N, it becomes more and more
difficult to find “harmless,” low-entropy
weight vectors. This result suggests a novel
mechanism that might contribute to set size
effects, i.e., declines in performance with set
size, observed in various psychophysical
tasks (see Discussion).

Generalization to a suboptimal decoder
The results presented so far concern the
FIM, which describes the asymptotic behav-
ior of the optimal estimator. An important
question is to what extent these results gen-
eralize to empirically motivated subopti-
mal decoders. Here, we show that the
effects of stimulus mixing, heterogene-
ity of the mixing weights, and across-
group noise correlations obtained from
the analysis of the FIM generalize to a
particular type of suboptimal decoder
called the optimal linear estimator (OLE;
Salinas and Abbott, 1994). Because OLE is a
biased estimator, we use the mean squared
error (MSE) as a measure of the estimator’s
performance.

Figure 8A shows the MSE of the OLE
for different degrees of stimulus mixing.
Increased stimulus mixing (decreasing w)
deteriorates the estimator’s performance.
This is consistent with the results pre-
sented above for the FIM. The stimulus
dependence of the estimator error, however, has a different
form than for the FIM. Figure 8B shows the MSE of the OLE for
different amounts of heterogeneity in the mixing weights. Again,
consistent with the results obtained from the FIM, increased het-
erogeneity improves the estimator’s performance. Figure 8C
shows the MSE of the OLE for different across-group correlation
values. Under strong stimulus mixing (w � 0.6), increasing �
improves the decoder’s performance by up to an order of magni-
tude in most cases. This effect is also consistent with the results
presented earlier for the FIM. The effect of �, however, becomes
less significant under the no stimulus mixing condition (w � 1).
The results for the OLE are also, in general, less dependent on 	s
than the results for the FIM.

Nonlinear forms of stimulus mixing
So far, we have considered a linear stimulus mixing model where
the responses of neurons to multiple stimuli are modeled as sim-
ple linear combinations of their responses to individual stimuli
alone. Do our results also hold for other forms of stimulus mixing, or
is the assumption of linearity crucial? To show that our results are
not specific to the linear mixing model, here we consider two non-
linear, experimentally motivated forms of stimulus mixing.

Nonlinear mixing model of Britten and Heuer (1999)
Britten and Heuer (1999) present pairs of moving gratings inside
the receptive fields of MT neurons and show that a nonlinear
mixing equation of the following form provides a good charac-
terization of their responses:

A B C

Figure 7. Linear mixing with more than two stimuli. A, Asymptotic variance as a function of the entropy of the weight vector.
Vertical dashed lines show log N (maximum entropy for each set size). B, Histograms of the asymptotic variance of the optimal
estimates for different set sizes from N � 2 to N � 6 with darker colors representing larger set sizes. The inverted triangles indicate
the median variance for each set size. C, Similar to B, but the weight vectors of different groups are sampled randomly from the
(N � 1)– dimensional probability simplex.

A

B

C

Figure 8. Results for the OLE decoder. A, Dependence of the mean squared error (MSE) of the OLE on w. The left plot shows the
MSE for a small � value (��0.1), and the right plot for a large � value (��0.9). B, Dependence of the MSE on the heterogeneity
of mixing weights. The weights w are drawn from a beta distribution with variance �w

2 . The two plots show the MSE for two
different � values. The inset on the left shows the weight distributions for three different �w

2 values. C, Dependence of the MSE on
�. The left plot shows the MSE for a small w value (w �0.6), and the right plot shows the MSE for a large w value (w �1). Different
curves in each part correspond to six different 	s � � s1 � s2� values indicated in the inset in A, with lighter colors corre-
sponding to smaller 	s values. Other parameter values are listed in Materials and Methods.
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fk�s1, s2� � a� f�s1; �k�
� � f�s2; �k�

�

2 � 1/�

� b, (78)

where f�s1; �k� and f�s2; �k� are the mean responses of neuron k to the
individual gratings. This equation can interpolate smoothly between
simple averaging (a � 1, � � 1) and max-pooling (�¡�) of re-
sponses to the individual gratings. Britten and Heuer (1999) report a
wide range of values for the parameters a and � across the population
of neurons they recorded from. They further show that allowing
these parameters to vary results in significantly better fits than the
simple averaging model for most of the neurons.

We assume a single unsegregated population of neurons
and derive the Fisher information matrix as before, using the
mean responses described in Equation 78 above. Figure 9A

shows the asymptotic variance of the
optimal estimator as a function of the
exponent �. Increasing � reduces stimu-
lus mixing and significantly improves
the encoding accuracy, consistent with
the results from the linear mixing
model. As in the linear mixing model,
the effect of stimulus mixing on encod-
ing accuracy can be understood, at least
qualitatively, by considering the magni-
tude of the overlap between the profiles
of the partial derivatives of the mean re-
sponses with respect to the two stimuli,
�f

�s1
and

�f

�s1
. For small � values, there is

significant overlap between the partial de-
rivative profiles, leading to a severe reduc-
tion in encoding accuracy, whereas larger �
values make the neurons sensitive to
changes in only one of the stimuli and thus
reduce the overlap between the derivative
profiles (Fig. 9B,C).

Divisive stimulus mixing
We next consider another biologically
motivated form of stimulus mixing
based on divisive normalization. Specif-
ically, as in the linear mixing model, we
separate the neurons into two groups
and assume that the responses of neu-
rons in each group are normalized by a
weighted sum of the activity of neurons
in the other group. The weighting is as-
sumed to be neuron specific such that
neurons with similar stimulus prefer-
ences exert a larger divisive influence on
each other. This type of divisive normaliza-
tion has previously been motivated by con-
siderations of efficient coding in early visual
cortical areas (Schwartz and Simoncelli,
2001) and can be used to describe stimulus-
dependent suppressive surround effects in
the visual cortex (Allman et al., 1985; Ca-
vanaugh et al., 2002). Mathematically, the
response of a neuron in the first group is
described by the following:

fk�s1, s2�

�
f�s1; �k�

2

	 � kw�k�
w��k, �k�� f�s2; �k��

2,

(79)

where for the weighting profile w��k, �k��, we use a normalized
von Mises function (see Materials and Methods). Responses of
neurons in the second group are similar, but with the roles of s1

and s2 reversed.
Figure 10, A and B, shows the effects of varying the divisive

normalization scaling factor kw and the across-group neural cor-
relations � on encoding accuracy. Increasing kw decreases encod-
ing accuracy. However, unlike in the linear mixing model, this
decrement in encoding accuracy does not only reflect the effect
of stimulus mixing per se, but also a stimulus-independent scal-

A B

C

Figure 9. Analysis of the nonlinear mixing model of Britten and Heuer (1999). A, The asymptotic variance of the optimal
estimator as a function of the exponent � (Eq. 78). Different curves correspond to six different 	s � � s1 � s2� values indicated
in the inset, with lighter colors corresponding to smaller 	s values. Note that for 	s � 0, the variance diverges in this model as in

the linear mixing model with w � 0.5. B, The inner product
�fT

�s1

�f

�s2
as a function of � (for 	s � /160). C, Profiles of the

partial derivatives of the mean responses for three different � values: ��0.2, ��1, and ��100. These points are also indicated
by the open square signs in A and B. Parameter values for the results shown here are listed in Materials and Methods.

A B C

Figure 10. Analysis of the divisive mixing model. A, The effect of varying kw. Dashed lines in A and B show the results for a model
with no stimulus mixing, but with gain matched neuron by neuron to that of the divisive mixing model. B, The effect of varying �.
Other parameter values are listed in Materials and Methods. C, Geometric intuition for the mildly harmful effects of a divisive form
of stimulus mixing in a simplified two-neuron model (Eq. 80). Maximum-likelihood estimates of the stimuli are represented by the
blue dots.
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ing of the response gain. To tease apart the
contribution of stimulus mixing per se
from that of a simple gain change in the
responses, we built a model that, neuron
by neuron, had the same gain as the divi-
sive normalization model in Equation 79
(for all stimuli), but whose Fisher infor-
mation was computed by treating the de-
nominator in Equation 79 as constant
(this was done by setting the off-diagonal
entries of the FIM to zero). This second
model thus eliminates stimulus mixing,
but preserves the neuron-by-neuron re-
sponse gains in the first model. The results
for this second model are shown with
dashed lines in Figure 10A and B. Com-
paring the dashed lines with the same col-
ored solid lines, we see that stimulus
mixing per se induces a cost to encoding
accuracy for stimulus pairs with large and
small 	s values, but not for stimulus pairs
with intermediate 	s values. As in the lin-
ear mixing model, increasing � improves
encoding accuracy in the divisively nor-
malized model as well (Fig. 10B).

Figure 10A suggests that stimulus mix-
ing in the divisively normalized form
given in Equation 79 is not as harmful as
in the linear mixing model (or in the non-
linear mixing model of Britten and Heuer,
1999). To understand this difference be-
tween the two forms of stimulus mixing,
we consider a two-neuron version of the
divisively normalized model analogous to the two-neuron model
considered earlier for the linear mixing model. We again ignore
the nonlinearities introduced by the tuning function f�s; �� and
model the responses of the two neurons as follows:

r1 �
s1

	 � ws2
� �1, r2 �

s2

	 � ws1
� �2. (80)

As in the two-neuron version of the linear mixing model, for a
given (r1, r2) pair, the two equations above define two lines in the
(s1, s2) plane whose intersection gives the maximum likelihood
estimate of the stimuli. We first note that unlike in the linear
mixing model, noise in ri changes the slopes of the lines. The
slopes of the two lines described in Equation 80 are given by
1/(r1w) and r2w, respectively. This suggests that as long as r1 and
r2 are sufficiently large, the slope of the first line will be small, and
will remain small despite random variations in r1, whereas the
slope of the second line will be large and will remain large in the
face of variations in r2. Unless r1 and r2 are very small, the two
neurons thus encode the stimuli approximately orthogonally
(Fig. 10C), unlike in the case of linear mixing where the slopes of
the lines can become arbitrarily close to each other as stimulus
mixing increases. This approximately orthogonal coding of the
stimuli, in turn, causes only a relatively small amount of distor-
tion in the estimates �ŝ1, ŝ2� as r1 and r2 vary stochastically for a
particular stimulus pair (as indicated by the spread of the blue
dots in Fig. 10C), explaining why stimulus mixing is less harmful
in the divisive mixing model than in the linear mixing model. As
in the linear mixing model, the stimulus dependence of encoding
accuracy in the divisive mixing model can be qualitatively under-

stood by considering the magnitude of the inner product of the
derivatives of the mean responses with respect to s1 and s2 (data
not shown).

Stimulus mixing is not always harmful for encoding accuracy
The examples of stimulus mixing considered thus far showed a
harmful effect on encoding accuracy. This raises the important
question: Is stimulus mixing always harmful for encoding accu-
racy? Here we show that the answer is no. To show this, we first
analyze the general stimulus mixing problem with a two-
dimensional toy model similar to the ones presented earlier for
linear and divisive mixing. We imagine two “neurons” mixing the
two stimuli s1, s2 according to f1(s1, s2) and f2(s1, s2), respectively.
The responses of the two neurons are given by r1 � f1(s1, s2) � �1

and r2 � f2(s1, s2) � �2 where �1 and �2 are Gaussian random
variables with variance � 2 and correlation �. We denote the
Jacobian matrix for the mean responses of the neurons by J.
One can think of J as a mixing matrix describing the sensitivity
of each neuron to changes in each stimulus. J would be diag-
onal (or antidiagonal) in the case of no stimulus mixing. The
FIM is given by IF � JT
�1J where � is the covariance matrix
of the response noise. IF

�1 gives the asymptotic covariance matrix
of the maximum likelihood estimator. To find the optimal mix-
ing matrix J, we minimize the trace of IF

�1, i.e., Tr�IF
�1�

� Tr�J�1
J�T� with respect to J. With no constraints on J, IF
�1

can be made arbitrarily small, for example by making J diagonal
and its diagonal entries arbitrarily large. Because the derivatives
in the Jacobian can be negative or non-negative, a plausible con-
straint on J is to require the sum of the squares of the derivatives
in J to be a finite constant K. In terms of the matrix J, this means

A

B

Figure 11. Numerical solution of the optimal mixing problem. A, Three example numerical solutions to the optimal stimulus
mixing problem for n independent neurons. In each plot, the spokes represent the gradients of different neurons in the population
and the black circle shows the unit circle. B, Three example numerical solutions to the optimal stimulus mixing problem for n
correlated neurons. Correlations between the neurons are assumed to be limited range, i.e., the correlation matrix R has the form
given in Equation 74 (with c0 � 0.3 and L � 2). The noise is assumed to be additive Gaussian with constant SD � � 1 for all
neurons. B, The gradient vectors are colored such that neurons with higher correlations have more similar colors, where the
similarity of the colors is indicated by their position on the circle shown in the inset on the left. The population has n � 16 neurons
in the examples shown here.
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requiring Tr[JT J] � K. The optimal J can then be found by the
method of Lagrange multipliers (see Materials and Methods).

The optimal solution is to set the gradients of the two neurons,
�f1 and �f2, to have equal norm and the angle between them to ��

with cos �� given by (Fig. 12A):

cos �� �
1 � �1 � �2

�
. (81)

The absolute orientation of the gradients in the plane, however,
can be arbitrary. Thus, Equation 81 describes a one-dimensional
family of solutions. Because Fisher information is a local measure of
information, this solution holds for a given arbitrary point (s1, s2) in
the plane. For optimal mixing over the entire plane, the conditions
specified by the solution have to be satisfied for each point (s1, s2) in
the plane. This can be achieved by choosing the mixing function of
the first neuron f1(s1, s2) arbitrarily and then choosing the mixing
function of the second neuron f2(s1, s2) such that the optimality
conditions on the gradients are satisfied at each point in the plane.

Three important aspects of the solution are worth emphasiz-
ing. First, the solution does not require J to be diagonal (or an-
tidiagonal). Thus, stimulus mixing is not intrinsically harmful,
but rather stimuli should be mixed in complementary ways by
different neurons so that the conditions on the gradients are sat-
isfied. Second, the optimal solution, in fact, necessitates a certain
amount of stimulus mixing when � � 0, as the optimality con-
dition for � � 0 cannot be satisfied with �f1 and �f2 aligned with
the two axes of the (s1, s2) plane. Third, for � ¡ 0, cos �� ¡ 0,
therefore, the gradients have to be orthogonal to each other in this
case. Furthermore, the optimal angle �� between the gradients
changes rather slowly as � moves away from 0. Thus the gradients
should be close to orthogonal for a large range of � values around 0.
The orthogonality condition can be understood as follows. Intui-
tively, �f1 is the first neuron’s “least uncertain” direction in the (s1,
s2) plane. The second neuron has to align its least uncertain direction
orthogonally to �f1 so that together the two neurons can encode the
stimuli with the least total uncertainty. In our original analysis of the
linear mixing model, the orthogonality condition can be satisfied
only when there is no stimulus mixing, because, motivated by a
consideration of consistency with physiological data, the weights
were assumed to be non-negative in that case.

The solution of the two-dimensional toy model can be readily
generalized to models with more than two neurons under certain

conditions (Eqs. 66 –71; see Materials and Methods). For the gen-
eral case of n neurons encoding two stimuli, as far as we know,
there is no closed-form solution for the optimal mixing matrix, J,
subject to a constraint on the total power of the derivatives. Nu-
merical solution of this more general problem shows that for any
given neural covariance structure, there is a diverse set of solu-
tions: Figure 11A shows three example solutions for n � 16 inde-
pendent neurons and Figure 11B shows three example solutions
for n � 16 correlated neurons with a limited-range correlation
structure. Moreover, random mixing of the stimuli by neurons
performs remarkably well especially for large n. Figure 12B com-
pares the performance of the median random mixing model with
that of the optimal mixing model for different n (compare the
black asterisks vs the black open squares). For the random mixing
models, the gradients of neurons were chosen subject to the total
power constraint, i.e., the sum of the squared norms of gradients
was constant, but they were otherwise random.

We also wanted to see how well linear mixing models perform
compared with unconstrained encoding models where the gradi-
ents can be set arbitrarily (subject to the resource constraint).
When the encoding model is constrained to be a linear mixing
model with two groups and fixed weights for each stimulus (Eqs.
66 and 67; see Materials and Methods), random ensembles of
linear mixing models perform worse than random ensembles of
arbitrary encoding models (Fig. 12B, compare the red vs black
open squares). Interestingly, however, the optimal solution for
the linear mixing model appears to have the same form as the
optimal solution of the two-dimensional problem and performs
as well as the optimal solution for arbitrary encoding models (Fig.
12B, compare the red vs black asterisks). Figure 12B shows the
results for populations with independent neurons. Analogous
results hold for correlated neural populations. With correlated
neurons, the improvement in the relative performance of ran-
dom ensembles with increasing n becomes somewhat slower and
the optimal linear encoding model no longer achieves the same
performance as the optimal arbitrary encoding model (Fig. 12C).

Discussion
Theoretical studies of population coding have traditionally fo-
cused on the encoding of single stimuli by neural populations
(Abbott and Dayan, 1999; Sompolinsky et al., 2001; Ecker et al.,
2011). In this work, we extended the neural population coding

A B C

Figure 12. Optimal stimulus mixing. A, Optimal angle between the gradients as a function of the correlation � in a two-dimensional stimulus mixing problem. B, Total variance, i.e., Tr�IF
�1�,

for the median random model compared with the total variance for the optimal model for both linear and arbitrary encoding models. For the linear mixing model, results for n � 16 are shown only.
With smaller n, the results are highly sensitive to the choice of tuning function centers. For random models, medians are computed over 256 random realizations of the encoding model. C, Similar
to B, but for correlated neurons (c0 � 0.3 for both the arbitrary encoding model and the linear encoding model and � � 0.9 for the linear encoding model).
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framework to the encoding of multiple stimuli, assuming encod-
ing models with biologically motivated properties. We examined
a linear mixing rule commonly observed in cortical responses.
According to this rule, the response to the presentation of multi-
ple objects can be described as a linear combination of the re-
sponses to the constituent objects. We find that this rule incurs a
severe cost to encoding accuracy. This cost is directly related to
the mixing of the stimuli in the neural responses, is independent
of any general decrease in the overall activity of the population,
and can be larger than the cost incurred by even large reductions
in the gain or large increases in neural variability. As noted earlier,
this result could explain why attention acts primarily as a stimu-
lus selection mechanism (Reynolds et al., 1999; Pestilli et al.,
2011), rather than purely as a gain increase or noise reduction
mechanism. However, it should be emphasized that mechanisti-
cally, stimulus selection can be implemented with a combination
of gain increase and a nonlinearity that would amplify the gain
differences (Reynolds and Heeger, 2009; Pestilli et al., 2011).
Therefore, gain increases might be an integral part of the stimulus
selection mechanism by which attention operates.

Why does linear mixing seem to be so prevalent in cortical
responses, if it indeed incurs such a large cost? It is possible that
linear, or close-to-linear, mixing is an inevitable consequence of
computations performed for other purposes, such as achieving
object representations invariant to identity-preserving transfor-
mations (Zoccolan et al., 2005, 2007). We emphasize that our
framework evaluates an encoding model in terms of the ability of
a downstream decoder to accurately estimate the constituent
stimuli in the face of neural variability. If, however, the goal of the
computation is not an accurate representation of the constituent
stimuli themselves, but computing a possibly complex function
of them, then linear mixing or similar models are not necessarily
harmful. For example, in the problem we considered in this pa-
per, if the computational goal were only to estimate a weighted
average of the two stimuli s1 and s2, linearly mixed responses
would be ideally suited for such a task. Finding the optimal neural
codes for the representation of multiple stimuli that achieve the
simultaneous objectives of successful performance in behavior-
ally relevant tasks (Salinas, 2006) and accurate encoding of con-
stituent stimuli could be an important future direction.

The harmful effects of stimulus mixing can be partially allevi-
ated by increased across-group neural correlations or by in-
creased heterogeneity in the mixing weights of the neurons.
Importantly, all our main results concerning the linear mixing
model, i.e., the effects of stimulus mixing, across-group neural
correlations, and heterogeneity in mixing weights generalize to
the suboptimal OLE decoder. This is not a trivial result, because
there is, in general, no guarantee that manipulating the properties
of a neural population should affect the performance of optimal
and suboptimal decoders in similar ways. Indeed, a previous
study (Ecker et al., 2011), for instance, found that in the presence
of diversity in neural tuning properties, limited-range correla-
tions can be beneficial for accurately encoding a single stimulus,
but this holds only if the responses are decoded optimally, and
does not generalize to the suboptimal OLE decoder.

In the linear mixing model, increasing the number of stimuli
makes stimulus mixing even costlier. This result suggests that
stimulus mixing might contribute to set size effects commonly
observed in visual short-term memory and other psychophysical
tasks. Decreases in performance with set size in such tasks are
typically attributed to a capacity limitation, e.g., an upper limit on
the total amount of neural activity, which might be implemented
by divisive normalization (Ma et al., 2014). However, our results

demonstrate that even without any constraint on the total
amount of neural activity (indeed, in our simulations, total activ-
ity was proportional to set size), set size effects would be expected
in the linear mixing regime, as it becomes more difficult to find
harmless, low (normalized) entropy weight vectors with increas-
ing set size. Such weight vectors can still be found through learn-
ing, but any learning algorithm would take longer to reach these
low entropy regions in the weight space and it would require
more fine-tuning to keep the weights in a low entropy region
once such a region is found through learning, as any noise in the
weights, or in the learning algorithm itself, would be more likely
to push the weights out of the low-entropy region.

The property that makes linear mixing particularly harmful
for encoding accuracy is not the linearity of response mixing per
se. It is rather the degree of overlap, or similarity, between the
derivative profiles of the neural responses with respect to differ-
ent stimuli that, to a first approximation, determines how harm-
ful a particular form of stimulus mixing can be (Figs. 6, 9B,C).
Indeed, our results for the nonlinear mixing rule of Britten and
Heuer (1999) show that stimulus mixing can lead to a severe
reduction in encoding accuracy even when mixing takes a
strongly nonlinear form.

Stimulus mixing, in itself, is not always harmful for encoding
accuracy. As our analytic solution to the optimal mixing problem
in a toy model and numerical solutions in more complex cases
suggest, it may even be optimal in the presence of neural correla-
tions. Stimulus mixing has to satisfy certain conditions to be
unharmful for encoding accuracy. In a simple two-dimensional
problem and with sufficiently low neural correlations, those con-
ditions can be condensed into an intuitive orthogonality con-
straint on the gradients of the two groups’ mean responses. In the
linear mixing model, this constraint is satisfied only if there is no
stimulus mixing at all or negative weights are allowed. We also
found that random mixing by individual neurons, assuming that
there is no restriction to non-negative weights, performs remark-
ably well, especially in large populations. This result is reminis-
cent of other cases where random solutions have been found to
perform well (Rigotti et al., 2010; Barak et al., 2013) and calls for
a more general account of the effectiveness of such random solu-
tions in diverse computational problems in neuroscience.

A stimulus mixing problem similar to the one investigated in
this paper has been studied previously for temporal signals
(White et al., 2004; Ganguli et al., 2008). Stimulus mixing in this
context refers to the mixing of signals at different time points in
the responses of a recurrently connected dynamical population of
neurons. White et al. (2004) show that neural networks with an
orthogonal connectivity matrix can achieve optimal estimation
performance for temporal signals uncorrelated across time. We
note that this is formally similar to the solution for the optimal
mixing matrix in our toy stimulus mixing problem, where we
found that orthogonal mixing matrices are optimal when neu-
rons are independent.

Finally, our results suggest that psychophysical tasks that re-
quire the simultaneous encoding of multiple stimuli can be in-
formative about the brain’s decoding strategies. Although
behavioral tasks with a single encoded stimulus can already pro-
vide useful information about the brain’s decoding schemes
(Haefner et al., 2013; Hohl et al., 2013), tasks with multiple en-
coded stimuli can yield additional and possibly richer informa-
tion about the decoder. For example, an optimal decoder predicts
specific types of correlations between the estimates of two stimuli
in a task where both stimuli have to be estimated simultaneously
(Fig. 4). If the pattern of correlations observed in such an estima-

3840 • J. Neurosci., March 4, 2015 • 35(9):3825–3841 Orhan and Ma • Neural Population Coding of Multiple Stimuli



tion task is found to be inconsistent with the predicted correla-
tions from an optimal decoder, this may be taken as evidence
against optimal decoding. Similarly, different types of decoders
make different predictions about the stimulus dependence of en-
coding accuracy even in tasks that require the estimation of a
single target stimulus among multiple stimuli (compare Figs. 1
and 8 for the stimulus dependence of encoding accuracy using the
optimal and OLE decoders, respectively). Again, such differences
can be used to rule in or rule out certain decoding schemes as
plausible decoding strategies the brain might be using in a given
psychophysical task.
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